
Fiddling with FreeBSD - Netgraph
@padukajorat Licenced under CC BY

Netgraph(4) in FreeBSD is a powerful and flexible in-kernel networking
subsystem.
It o�ers a method for combining protocol and link-level drivers, a
modular approach to implementing new protocols, and a common
framework for kernel entities to communicate.

What is netgraph?

The fundamental concept in Netgraph(4) is the use of nodes and hooks,
where each node has a specific type, and nodes are interconnected
through hooks. each node type is documented in its man pages, $
apropos netgraph OR $ man -k netgraph.

In this article, we will explore ng_ether(4), ng_bridge(4), and
ng_eiface(4), along with some hands-on examples.

What do you need to follow along?

Freebsd installed on laptop, desktop or in a vm and an extra network
interface. if using primary interface on VM you will loose connectivity
untill upper hook of ng_ether is connected, best use second interface.

Let's Start...
To interact with Netgraph, the ngctl(8) utility is provided, which
allows you to create nodes and connect hooks.
There are two ways to use ngctl(8) interactively and non-
interactively.

Before using ngctl(8), let's first list the kernel modules currently
loaded on the system.

$ kldstat

If you haven't run ngctl(8) previously, you may not see any kernel
modules starting with ng_*. However, if you're using a desktop
environment, you might see modules like ng_ubt and ng_bluetooth
already loaded.

Let's run ngctl(8) now and observe its output, as well as the output
of kldstat

$ doas ngctl list OR # ngctl lists

The ng_socket(4) node type enables user-mode processes to
interact with the kernel's Netgraph(4) networking subsystem through
the BSD socket interface. in this case ngctl(8) utility has created
socket for us.

observe that $ doas ngctl list output where Name and ID
changes every time you run this command.

Below modules related to Netgraph have been dynamically loaded.

$ kldstat

Now let us load the ng_ether(4) kernel module and observe the
ngctl list command output.

$ doas kldload ng_ether.ko

$ kldstat

$ doas ngctl list OR $ doas ngctl ls

1 2

Each node has a type, which is a static property of
the node determined at node creation time.

1

Nodes are connected by pairs of hooks, allowing
bidirectional data flow. Each node can have
multiple hooks and assign its own meaning to them.

2

Once the ng_ether module is loaded into the kernel, a node is
automatically created for each Ethernet interface on the system. Each
node will try to name itself after the associated interface.

As of now we are running commands non-interactively, let us do some
interactive communication with ngctl.

Let's make productive use of ng_ether(4) by creating ng_bridge(4) and linking it to ng_ether's
lower hook. First, let's take some time to understand what ng_ether and ng_bridge are.
ng_ether(4) provides three hooks: lower, upper, and orphans.

The lower hook connects to the raw Ethernet device. When connected, all incoming packets are
forwarded to this hook, bypassing the kernel for upper-layer processing.

The upper hook connects to the upper protocol layers. Outgoing packets are forwarded here instead
of being sent by the device, and writing to it causes a raw Ethernet frame to be received by the kernel.

Incoming Flow

Upper

Lower Physical Interface

1 1 0 1 Raw Ethernet Frames

Hook

Hook

ng_ether(4)

Upper Layer Protocols

1

Upper

Kernel Physical Interface

Raw Ethernet Frames

1 1 0 1

Hook

ng_ether(4)

Upper Layer Protocols

Packets 2

Outgoing Flow

Lower Hook - Incoming Flow 1

Upper Hook - Outgoing Flow 2

ng_bridge(4) provides unlimited hooks: link0, link1...linkN

link0 link1 linkN

ng_bridge(4)

Let's do hands on ng_ether(4) and ng_bridge(4)
$ doas ngctl mkpeer vtnet1: bridge lower link0

$ doas ngctl show vtnet1:

The output should display the local hook, namely the lower hook, which is connected to the
peer type bridge on the peer hook link0.
However, if you check the peer name field, it shows "<unnamed>". Let's assign a name to our bridge.

$ doas ngctl OR # ngctl

Your prompt should now display the output of the available commands
in interactive mode.

Let's view few of them.

OR

OR

Let's learn ng_ether(4), ng_bridge(4) and ng_eiface(4).

Two ways we can do this either interactive mode or non-interactive mode.

Interactive mode

$ doas ngctl list

$ doas ngctl OR # ngctl

+ show vtnet1: OR + show [007]:

+ name [007]: firstbridge OR + name vtnet1:lower bridge0
+ show vtnet1:
+ show bridge0: OR + show firstbridge:

Non-interactive mode
$ doas ngctl list

+ ls

Assuming you have ID: 000000b of the bridge

$ doas ngctl name "[00b]:" firstbridge

$ doas ngctl name vtnet1:lower bridge0
OR

Now we are going to connect our ng_ether(4) upper hook to ng_bridge(4) link1

$ doas ngctl connect vtnet1: bridge0: upper link1

$ doas ngctl show bridge0: OR $ doas ngctl show vtnet1:

$ doas ngctl ls -ln

With that, the bridge setup with vtnet1 is complete. Now, let's create another node type called
ng_eiface(4) supports single hook called ether, which is a generic Ethernet interface, and
named as ngeth0, ngeth1, and so on.

$ doas ngctl mkpeer . eiface ether ether

here "." is local node and you can exclude it. you should see ngeth0 of type eiface created.

$ doas ngctl list

let's connect our ngeth0 ether hook to bridge0 link2

$ doas ngctl connect ngeth0: bridge0: ether link2

With that our ngeth0 is connected to bridge0 on link2, let's create jail and assign ngeth0 to our
first jail.

$ doas jail -c name=first host.hostname=first.home.arpa vnet persist

$ doas ifconfig ngeth0 vnet first

lets assign ip address to our first jail. assign this based on your network not what i mention below.

$ doas ifconfig -j first ngeth0 172.16.80.151/24

Try pinging from host, you should now have working jail setup. you can create ngeth1 and connect it
to link3 of bridge0 and assign ngeth1 to second jail.

$ doas ngctl msg vtnet1: setpromisc 1 Read ng_ether(4) man page

